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ABSTRACT 
 

Traditional risk modeling using Value-at-Risk (VaR) is widely viewed as ill equipped for dealing 

with tail risks. As a result, scenario-based portfolio stress testing is increasingly being promoted 

as central to the risk management process. A recent innovation in portfolio stress testing 

endorsed by regulators, called reverse stress testing, is intended to identify economic scenarios 

that will threaten a financial firm’s viability, but do so without injecting the manager’s cognitive 

biases into stress scenario specification. While the idea is intuitively appealing, no template has 

been provided to operationalize the idea. Some first steps in developing reverse stress testing 

approaches have begun to appear in the literature. Complexity and computational intensity 

appear to be important issues. A more subtle issue appearing in this emerging research is the 

relationship among the concepts of likelihood, plausibility, and representativeness. In this paper, 

we propose a novel method for reverse stress testing. The process starts with a multivariate 

normal distribution and uses Principal Components Analysis (PCA) along with Gram-Schmidt 

orthogonalization to determine scenarios leading to a specified loss level. The approach is 

computationally efficient. The method includes the maximum likelihood scenario, maximizes (a 

definition of) representativeness of the scenarios chosen, and measures the plausibility of each 

scenario. In addition, empirical results for sample portfolios show this method can provide new 

information beyond VaR and standard stress testing analyses. 

 

INTRODUCTION 
 
Stress testing’s aim is to elucidate the level of portfolio loss under the condition that a specified 

event occurs (i.e., a conditional loss forecast). This contrasts with the risk measure known as 

Value-at-Risk, which defines a level of portfolio loss expected to be exceeded with a specified 

probability (a quantile of a forecast loss distribution of a specific form). Over the last fifteen 

years, use of stress testing has gained ever-wider currency, fueled by perceived failings of Value-

at-Risk and other traditional risk models under extreme events.1

                                                 
1See, e.g., Jorion (2001, 2006). 
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Stress Testing is thought to complement traditional risk models by focusing on events that are 

not represented in traditional risk forecasts, either because they are absent from or under-

represented in the historical record. Thus a stress test, unlike a quantile forecast, it is not defined 

in relation to all possible states of the world and their estimated probabilities. This claim may be 

overstated, however, as stress testing covariance matrices may actually confound the conditional 

loss forecast with the statistical density forecast.2

REVERSE STRESS TESTING 

 

In addition to the conceptual problems just alluded to, stress testing also entails design obstacles 

as a risk forecasting technique. One of the most troublesome is the subjective nature of the 

specified shocks. Indeed, this is especially important in cases in which shocks are not explicitly 

set by regulators (which is common only in the banking industry), e.g., under company-

generated stress scenarios in the US, as required under the Dodd-Frank Act. It is not easy to 

demonstrate that a particular stress testing scenario, specifically the magnitude of the various 

stress shocks, have been chosen unbiasedly and represent risks relevant to the financial firm’s 

decision making. In other words, plausibility and relevance must be demonstrated, with the 

emphasis on plausibility. Reverse stress testing has as its main motivation the goal of 

overcoming this particular objection. 

 

 

The Federal Reserve Board has described reverse stress testing as a process in which banks first 

“assume a known adverse outcome… then deduce the types of events that could lead to such an 

outcome.” (Federal Reserve Board (2012), p. 12). In other words, instead of asking ‘what will 

happen to my portfolio if oil rises X % or S&P 500 drops Y %?’; a user performing a reverse 

stress test will simply ask ‘what are the plausible ways for my portfolio to lose Z %?’. Reverse 

stress testing has a short history. First suggested in the report of the Counterparty Risk 

Management Policy Group III (2008), it has been embraced by the banking regulatory 

community, perhaps most enthusiastically by the UK’s Financial Securities Authority (2008) 
                                                 
2 See Novosyolov and Satchkov (2010). Discussion of those problems is outside of the scope of this paper, but it is 
important to note that any reverse stress testing will be subject to the same issues. Thus, the distribution that serves 
as the foundation for reverse stress tests must be built to reflect the actual tail behavior, not the extrapolated normal 
behavior. With that note, we will focus on mechanics of the reverse stress testing and will leave the distributional 
issue for a separate research study. 
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(See also Basel Committee on Banking Supervision (2009), and above-mentioned Federal 

Reserve Board (2012). Absent from the regulatory endorsements is any indication of how such 

scenarios are to be identified computationally. For a (non-degenerate) multi-asset portfolio an 

infinite number of solutions to this question are possible.    

Several authors have recently proposed approaches to the identification of meaningful reverse 

stress tests. See, Breuer and Csiszar (2010), Breuer, Jandacka, Rheinberger, and Summer (2009), 

Flood and Korenko (2010), Glasserman, Kang, and Kang (2012), Grundke (2011, 2012), and 

Skoglund and Chen (2009). Most of these papers share the common theme of identifying the 

maximum likelihood scenario as a way of selecting one scenario as most relevant.3

IDENTIFYING SCENARIOS UNDER REVERSE STRESS TESTING 

  However, 

identifying a single scenario as relevant may be an approach that too optimistically relies on the 

data used to parameterize the return distribution. Mirzai and Müller (2013) use an approach 

based on a large number of portfolio simulations and a heuristic method for identifying the 

characteristics of meaningful scenarios.  

The approach in this paper differs from other work in that it selects multiple scenarios in a 

systematic fashion so that they are plausible and maximize the differences from one another 

under a specific measure. One of the scenarios selected is always the maximum probability 

scenario corresponding to the given loss level. The methodology is discussed next.  

 

 
The first and a deceptively easy way to identify scenarios is to simply use standard risk 

decomposition based on Euler’s theorem for homogenous functions. In the case of VaR, it is 

commonly known as Component VaR. One could take the Z% loss specified above and simply 

examine Component VaR4 that corresponds to that loss level. Obviously, that would only be one 

scenario and it is what all risk managers currently use5

                                                 
3 McNeil and Smith (2011), examining a related problem, show that the maximum probability scenario for a given 
level of loss is isomorphic to the Value-at-Risk for some confidence level 𝛼𝛼 (under certain regularity conditions).   
4 Sometimes this term is called Incremental VaR, though we prefer to reserve the use of that term for the partial 
duration of the risk measure with respect to weight. Component VaR should add up to total VaR (this could also be 
called a contribution to tracking error, since in a parametric world the two are equivalent). 
5 Recall, that we left the differences in modeling distributions outside of the scope of our discussion here. 

. However, it is important to keep that 

decomposition in mind, since we will later show that this standard risk decomposition will 
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correspond to the most likely scenario in any set of reverse stress tests over a given loss 

hyperplane. Other ways of losing Z % could be plausible, even likely, but the one corresponding 

to the Euler’s decomposition is actually a scenario with most likelihood (highest density 

conditional on the event that the loss of Z % occurs). We will later put forth the proof of this 

assertion, but it is worth considering this Component VaR, since it will be the starting point for 

our thinking on the topic. But even the fact that a scenario has the highest density certainly does 

not mean that it is the only scenario of interest or that focusing on this most likely scenario is 

productive for risk management. For more on this, please see the Discussion of Results section. 

Before we employ any mathematical machinery we must understand conceptually what kind of 

scenarios we are looking for when we are performing reverse stress testing. We would posit that 

these scenarios must satisfy the following criteria: 

 a. They are likely 

 b. They are at least somewhat different (otherwise we could just do with one scenario 

from our standard risk decomposition to describe it all) 

 c. They are not missing any danger scenarios 

Now that we have some specification of what we are looking for, let us examine the tools that 

will be necessary. 

 

REVERSE STRESS TESTING IMPLEMENTATION 
 
Given an asset vector  possessing multivariate normal distribution with zero 

mean and covariance matrix . Consider portfolio weights  and 

portfolio return . The latter possesses univariate normal distribution with zero mean and 

variance . 

Next, given a loss level (say, VaR at a specified confidence level) , which scenarios would lead 

to such a loss? The complete answer to this question is: these are scenarios  satisfying the 

equation 

 . (1) 
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Now we want to select a few scenarios from this whole set of them. Denote  the hyperplane in 

 defined by the equation (1), that is . The conditional 

distribution of  given  is clearly normal with mean , let us denote it by . 

 

Figure 1. Initial distribution ellipse, portfolio hyperplane, and the mean of the conditional 

distribution . 

The vector  is calculated as follows. The point  is such that some ellipsoid  

is tangent to the hyperplane at the point , so the gradient of  is proportional to , 

thus 

 , 

or . On the other hand, (1) implies that , thus  which gives 

 and 

 . (2) 
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In fact, the vector  also marks the maximum of conditional distribution density over . 

Indeed, the conditional distribution density is proportional to the unconditional one, thus 

maximizing the density is equivalent to minimizing  over . Necessary and sufficient 

optimality condition for quadratic programming problem states that the gradient of the goal 

function should be orthogonal to . In other words, an ellipsoid  should be 

tangent to  at the optimal point. These are exactly the conditions that led to (2). 

As noted above, the vector  coincides with the gradient of Value-at-risk in component VaR 

decomposition. Indeed, Value-at-risk at confidence level  is , where  is the 

quantile of the standard normal distribution at level . Its gradient is 

 . 

Given loss , we have , so 

 , (3) 

which coincides with (2). 

We will describe the process of building desired scenarios in two directions. First we will make 

some transforms to a convenient position, from which our algorithm can do its work, and then 

simply use inverse transforms to get back to the familiar coordinate plane. 

 

DIRECT TRANSFORM. 

First step of direct transform is intended to make the description of conditional normal 

distribution on a hyperplane more convenient. To achieve this we look for a pivot that moves 

weights vector  to the vector . This may be done as follows. Start with a 

matrix of full rank with  as a first row, and apply the Gram – Schmidt orthogonalization 

procedure to its rows, denote the resulting orthogonal matrix . One can easily see that indeed 

. The asset vector  is transformed by this matrix to the random vector 

  (4) 
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with zero mean and covariance matrix 

 . 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The distribution an portfolio parameters after pivoting using the matrix  

 

The hyperplane  goes to another hyperplane  defined by 

 . 

By the appearance one can see that for  we have , and other coordinates 

make take any values. This means that  is parallel to the coordinate hyperplane, making it 

easy to describe the conditional distribution of given . Indeed, denote , 

and consider a block structure of the covariance matrix  of the form 

 . 

It is well known that the distribution of  given  is normal with mean   

 

y1 

y2 

wY 

aH
Y 

HY 
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and covariance matrix  

  (5) 

Note, that the only reason for the above gymnastics is mathematical convenience; conceptually it 

is not necessary. We simply had to rewrite a degenerate distribution, because we took away one 

of its degrees of freedom by constraining a portfolio to a specific loss, but did not remove any 

corresponding variable in the parametrization. Now that the corresponding variable is removed, 

we have a mathematically tractable distribution and we can move on with finding our scenarios. 

After we are done, we will pivot it back to the original distribution to analyze the results. 

 

EQUIDISTANT POINTS. 

The second step is also a mathematical device, but it does not have any relation to the initial 

distribution. It simply provides  points, one of them being the origin, and the rest  

would lie inside the ball of a given radius  as far from each other as possible. For  the 

latter  points are actually vertices of a regular  - simplex inscribed into the ball, e.g. for 

 this is a regular inscribed triangle. The  points in  may be found as a solution to 

the optimization problem 

  (6) 

subject to 

  (7) 

where  stands for Euclidean distance between  and  

  

and  stands for the origin. Note that the problem (6), (7) has infinitely many solutions, which 

may be obtained from one another by pivoting the ball (7) around the origin. This is illustrated in 

figure 3. 
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After the solution we just add  zeros to the end of each vector  to turn them 

into  vectors. 

 

 

 

 

 

 

 

 

Figure 3. Two possible solutions of the problem (6), (7) for  

 

To fix the problem we require that the first point  has exactly one (first) non-zero component, 

so that inevitably , the second point has only two first non-zero components, so that 

, and so on, 

 . (8) 

This would ensure that after going to principal components space first points always reside 

within first principal components subspace, thus possessing the largest possible likelihood. 

 

ADJUSTING TO PRINCIPAL COMPONENTS. 

The third step is moving the selected  points in such a way that they would represent the 

most likely scenarios among those located at given distances from each other. To achieve this 

denote  the  matrix whose columns are eigenvectors of , sorted in 

descending order of eigenvalues, and apply the transform 

 . 

R=1 R=1 
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After that calculate radius so that the minimum relative likelihood (defined later) equals to the 

required value , which gives 

 , (9) 

and finalize the transform by 

 . 

Note that since only first  components of each  are nonzero, the ’s populate the most likely 

area of the hyperplane , as desired. Here we also calculate the values of conditional density 

function  at each scenario , relative to the value of density at : 

 . (10) 

Let us illustrate adjusting to principal components by a figure.

 

 

 

Figure 4. Adjusting to first principal components 
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BACK TO INITIAL PLACEMENT. 

To finalize we should pivot  back to , which is easily done using the  matrix. First add to 

the beginning of each vector  the constant first component  to turn them to  - 

dimensional vectors, and finally apply the pivot 

 . 

These are the desired scenarios, the result of reverse stress testing. They may be ranked with 

respect to values of relative likelihood calculated in (10). 

 

ADDITIONAL NOTES 
 
The number of scenarios taken may be tied to variance explained by principal components. E.g. 

if we’d like to stay within principal components explaining 80% of variance, and this is achieved 

by 5 principal components then we should constrain ourselves with 6 scenarios which would fit 

into the span of the first 5 principal components. In practice the number of scenarios may also be 

selected from convenience point of view, thus  seems an appropriate choice for most 

cases. 

The relative likelihood  may be chosen as 0.1, meaning that the less likely scenario possesses 

the relative likelihood 10 times less than the central scenario . 

 

HOLDINGS BASED MODEL 

In this case we have a model 

  (11) 

where  stands for securities returns,  denotes risk-free rate,  means loadings to factors , and 

 stands for residuals (idiosyncratic risk). Here  are  vectors,  is an  vector, 

and the loadings matrix  has the size . Denote  the covariance matrix of . For the 

purpose of reverse stress testing we will ignore the residual risk by setting . 
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Now consider a portfolio of securities with weights  so that the portfolio return is 

 . 

Given a portfolio shock , denote , and , thus obtaining a factors 

portfolio representation 

 . (12) 

This latter representation has a disadvantage that some factors possess huge variance and small 

loadings, which result in small weights in . These factors do not bring much value to portfolio, 

but dominate other factors in principal components decomposition, which is misleading. To 

overcome the trouble, we rescale the problem in such a way that weights in  have similar order 

of magnitude. 

To achieve this, first eliminate zero and insignificant weights in . Choose a small  and 

denote 

 . 

Later on we will keep only weights (and factors) with indices in , setting other weights to 0. 

Denote  the number of elements in , and introduce multipliers . Now 

we let 

  

and 

 . 

Next let us collect the components  into the column vector , and the components 

 into the column vector . The covariance matrix  of  is obtained from  by 

selecting columns and rows with numbers in  and scaling both by the same multipliers. More 

formally, denote  the diagonal  matrix with numbers  in its diagonal, and  

the selected rows and columns of , then 

 . (13) 

We reduced the problem to finding scenarios such that 
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 . (14) 

Now apply the standard procedure to build  scenarios , and convert them 

to initial scaling by scaling components of ’s with  

 , 

and filling the rest places of scenarios with zeros. 

 

DISCUSSION AND APPLICATIONS 
 
Next, we will discuss two applications for the algorithm described above: 

1. Enhance standard decomposition of tracking error or VaR that is typically based on 

Euler’s theorem for homogenous functions by adding additional plausible scenarios. 

Form quasi-confidence intervals for contributions to TE/VaR to report the contributions 

that are stable in various scenarios at the same loss level. 

2. Suggest efficient intra and inter-asset class hedging strategies at a given loss level. 

Application 1: Enhance risk decomposition techniques by adding plausible scenarios 
beyond the standard decomposition based on Euler’s theorem for homogenous functions 
 
As we have already shown in formula (2), the center of our sphere  coincides of the gradient of 

VaR with respect to the vector of portfolio weights. It is well known that this gradient serves as 

the basis for traditional risk decomposition based on the Euler theorem, which states that for any 

homogenous function of degree 1: 

∑ ∂
∂

=
i i

i x
xfxxf )()(       (15) 

Since parametric VaR function has the required properties, the total risk budget is apportioned 

using the Component VaR equal to the right hand side of the equation (15), see Jorion (2001). 

Thus, the decomposition in formula (15) is currently the primary means for quantifying 

contributions from asset class, manager, desk or asset contributions to the overall risk budget. 

Crucial decisions from strategic asset allocation to compensation are taking into account this 

specific form of the risk budget. And while, as we have shown, the Component VaR based on the 

Euler theorem is the outcome associated with the highest conditional density over a given loss 
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hyperplane, it is still only one outcome. If there were other outcomes that are still likely (even if 

that likelihood is below maximum by definition) and different enough, it would be very 

important for any risk manager to be aware of them. Consider the table in Exhibit 1. In it we 

have an equal weighted portfolio of a thirteen various asset classes and we are examining the 

scenarios that can lead to the loss level of -15%. Each title contains a description of the form 

Scen A: X (of Y%). The “A” is the number of the scenarios; we chose up to five scenarios in 

addition to scenario zero, which corresponds to point . The value “X” is calculated by the 

formula (10) and represents the likelihood (plausibility) of a scenario relative to the most 

conditionally likely scenario zero. Finally, “Y” represents the inverse VaR that corresponds to 

this loss level. In a table below this value is equal to two percent, which means that a loss level 

of -15% corresponds to a 98% VaR for this portfolio. 

 
Exhibit 1 – Contribution to loss from equidistant points on the sphere in the loss hyperplane 

Name 
Weigh
t % 

Scen
0 : 
100% 
(of 
2%) 

Scen
1 : 
52% 
(of 
2%) 

Scen
2 
:12% 
(of 
2%) 

Scen
3 :3% 
(of 
2%) 

Scen
4 : 
1% 
(of 
2%) 

Scen
5 :1% 
(of 
2%) 

Contr. 
Stabilit
y 

EUR 7.69 -2.47 -2.31 -2.88 -1.79 -2.79 -2.59 6.88 
SP500 Health Care 7.69 -1.36 -1.74 -1.63 -1.37 -0.98 -1.07 4.99 
AUD 7.69 -2.82 -3.34 -3.25 -1.79 -3.59 -2.11 4.28 
Russell Equity (Russell 2000) 7.69 -2.04 -2.80 -1.88 -1.88 -2.40 -1.22 4.16 
CHF 7.69 -1.53 -1.23 -1.82 -0.90 -1.64 -2.08 3.97 
TIMBER 7.69 -1.79 -2.36 -1.70 -1.78 -2.26 -0.85 3.65 
Germany Equity (Frankfurt 
XetraDax) 7.69 -1.97 -2.98 -1.78 -1.52 -2.45 -1.13 3.27 
Gold Commodity 7.69 -1.16 -0.56 -1.15 -0.87 -1.23 -1.98 2.66 
GBP 7.69 -1.47 -1.54 -1.44 -0.50 -2.43 -1.42 2.62 
Germany Bond (10 GOV TR) 7.69 0.70 1.29 1.45 -0.69 1.68 -0.25 0.79 
Industrials AAA 7.69 0.20 0.48 0.21 -0.42 0.42 0.33 0.68 
JPY 7.69 0.33 0.79 0.03 0.09 1.17 -0.44 0.63 
US Bond (7-10 GOV TR) 7.69 0.38 1.29 0.85 -1.58 1.49 -0.18 0.36 
Grand Total 100 -15 -15 -15 -15 -15 -15 NA 
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It is plain to see from Exhibit 1 that traditional VaR decomposition would have left out 

significant additional information about the risk profile of the portfolio. We have added a 

measure called Contribution Stability to gauge the degree of reliability provided by the 

decomposition based on the Euler’s theorem for homogenous functions. It is calculated as the 

absolute result of the ratio of scenario zero divided by the standard deviation of all chosen 

scenarios. This is just one of the alternatives that could be used to gauge the stability. At the top 

of the list is a EUR position. Its contribution at the 15% loss level is relatively stable, ranging 

only from -1.79 to -2.79. At the opposite end is a US Treasury position which can give a 1.58% 

loss of 1.49% gain. Clearly, scenario zero contribution of -2.47% (equivalent to standard 

Component VaR) for the EUR position is reasonably representative of its loss potential. 

However, scenario zero contribution of .38% does not paint an accurate picture of the loss 

potential of the US Treasury across different plausible environments. Thus, additional scenarios 

provide useful information about the reliability of the standard Component VaR for any given 

position and show the potential for plausible deviations from it. 

Application 2: Suggest efficient hedges 
 
However, the applicability of the algorithm does not stop there and can be extended in a number 

of directions, one of which is hedging. Hedging is done in a variety of contexts. When a specific 

risk to be hedged is known in advance with certainty, hedging then reduces to finding an 

instrument that has a transparent relationship to this risk, calculating the necessary hedging ratio 

and implementing the hedge. Let’s call this the ‘simple’ hedging. However, not all hedging is 

reduced to such neat algorithm. Frequently, hedging will mean overall de-risking of a complex 

portfolio which has a very complex set of interrelated exposures e.g. a multi-asset class portfolio 

that is widely diversified. Rather than discussing various possibilities for de-risking of the 

portfolio, we can try to imagine an ideal instrument that would possess the same properties as an 

instrument used in our ‘simple’ hedging process. This would be like creating a derivative based 

on the actual portfolio held by the client. But where would we find such an instrument and what 

would be its cost? The Reverse ST process outlined above suggests that we can come close at a 

very low cost, by finding asset classes/factors/instruments that are closely related to our portfolio 

in all scenarios and for which the magnitude of moves can be reasonably closely linked to a 

given loss level in a portfolio. The key to this process is the observation that in the Reverse ST 
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algorithm we are not limited to observing the behavior of asset classes/assets/factors that are held 

in a portfolio. We can include any number of factors and understand how they relate to our 

portfolio when our portfolio incurs a specific loss. Among those we can look for our ideal hedge 

of a basket of hedges. Such a hedge could possess three great properties: 

a. We can find assets that move in line with our portfolio, but with bigger scale. This will 

give us a chance to buy inexpensive insurance, because we would only be looking for a 

payoff given a large move in the underlying. 

b. We can find assets that are related to portfolio in many different scenarios and not just in 

a most likely one. 

c. We can look across wide universe of available assets/asset classes/factors to find tradable 

instruments for which derivatives are readily available. 

Let’s consider Exhibit 2. The scenarios shown in it are exactly the same as the ones in Exhibit 1. 

There are two differences, however. The first is that the list of asset classes is extended to 

include asset classes not held in a portfolio. The second is that returns are not in the contribution 

form, but rather in a standalone form, that is, not scaled by the weight. This return can be 

interpreted as the return corresponding to a given plausible scenario tailored such that a given 

portfolio loses 15%. The list in Exhibit 2 is only partial and in theory there are no limits as to 

how many asset classes can be examined6

By analogy with Contribution Stability we calculated a “Hedge Robustness” (HR) measure, 

which has the same formula (a stylized Z-score), but is calculated on standalone returns without 

regard for portfolio weightings. The higher the HR is, the higher the scenario zero absolute 

return is, thereby satisfying the property (a) above. Also, the higher the HR is, the less variability 

it exhibits among the chosen scenarios i.e. property (b) above. Property (c) is achieved by 

including many different asset classes for which we can readily find derivative instruments. The 

top hedge in a list is EUR, which is not surprising given the analysis of Exhibit 1. However, 

EUR is already held in a portfolio and we may assume that this exposure is desired on other 

grounds. The following best hedges are Argentina Equity, Oil, Spain Equity, Russell Growth, 

AUD. Any one of them or a basket of them will serve as a good hedge for the portfolio. The 

. 

                                                 
6 Rather, the limits will come from sources outside of the Reverse ST algorithm, like stability of the covariance 
matrix estimators. 
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hedging ratios are easy to calibrate given the chosen loss level and the corresponding loss levels 

of each asset class in question. This allows for the choice of various deep out-of-the-money 

liquid derivatives for de-risking, which is far less costly than the OTC hedges currently placed on 

such portfolios. 

 

Exhibit 2 – Standalone returns for various asset classes and Hedge Robustness 

Name 
Weigh
t % 

Scen
0 :  
100% 
(of 
2%) 

Scen
1 :  
52% 
(of 
2%) 

Scen
2 :  
12% 
(of 
2%) 

Scen
3 :  
3% 
(of 
2%) 

Scen
4 :  
1% 
(of 
2%) 

Scen
5 :  
1% 
(of 
2%) 

Hedge 
Robustnes
s 

EUR 7.7 -32.1 -30.0 -37.5 -23.3 -36.3 -33.7 6.9 
Argentina Equity 0.0 -42.5 -56.4 -44.7 -39.7 -42.2 -29.7 5.4 
GENERIC 1ST CRUDE OIL, WTI 0.0 -34.7 -45.7 -33.2 -26.3 -42.1 -26.3 4.8 
Spain Equity 0.0 -45.6 -63.1 -42.9 -35.0 -52.7 -34.0 4.5 
RUSSELL 1000 GROWTH 
INDEX 0.0 -21.0 -29.5 -18.7 -20.6 -22.9 -13.3 4.3 
AUD 7.7 -36.6 -43.5 -42.3 -23.3 -46.6 -27.5 4.3 
Jet Kerosene Swap Future 0.0 -25.0 -24.8 -20.5 -21.4 -37.9 -20.1 4.1 
US Equity (S&P 500) 0.0 -21.5 -28.9 -20.3 -21.4 -25.4 -11.6 4.0 
US Bond (7-10 GOV TR) 7.7 4.9 16.7 11.1 -20.5 19.4 -2.3 0.4 
US TIPS INDEX 0.0 -3.6 5.5 -7.5 -16.8 -13.7 14.4 0.3 
Japan Bond (10 GOV TR) 0.0 0.3 1.1 1.6 -1.8 2.2 -1.4 0.2 
Corporate AAA 0.0 -0.4 1.2 -1.3 -4.4 2.4 0.3 0.2 
Italy Bond (10 GOV TR) 0.0 0.5 7.4 -4.0 5.4 -6.4 0.0 0.1 
Spain Bond (10 GOV TR) 0.0 0.3 8.7 -1.8 4.5 -8.1 -1.5 0.1 

 

CONCLUSION 
 
Traditional risk budgeting process relies in a large part on a specific decomposition of Value-at-

Risk or a Tracking Error. We show that this decomposition possesses an important property of 

having the highest conditional density on a loss hyperplane that corresponds to a given VaR 

level. However, focusing on the most likely outcome is leaving out important information which 

would surely modify the decision making if it was available. We show that a specific Reverse 

Stress Testing algorithm can be applied to the same risk model to significantly expand the 
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foundation risk decomposition. The scenarios are chosen to satisfy the criteria of plausibility and 

variety, in other words, to expand the useful information set.  

Reverse Stress Testing algorithm has a number of other uses beyond augmenting the standard 

risk decomposition and budgeting procedures. It can be used to significantly expand the hedging 

universe and to find “put options” on a specific portfolio in the marketplace without resorting to 

the expensive OTC hedges. 

 

REFERENCES 
 

Basel Committee on Banking Supervision. 2009. Principles for Sound Stress Testing Practices 

and Supervision. Working paper (May).  

Breuer, Thomas and Csiszar, Imre. 2010. If Worst Comes to Worst: Systematic Stress Tests in 

General Risk Models. Working paper (January).  

Breuer, Thomas, Jandacka, Martin, Rheinberger, Klaus and Summer, Martin. 2009. How to Find 

Plausible, Sever, and Useful Stress Scenarios. Working paper, 

OesterreichischeNationalbank, #150 (February).  

Board of Governors of the Federal Reserve Systrem. 2012. Guidance on Stress Testing for 

Banking Organizations with Total Consolidated Assets of More than $10 Billion. SR 

Letter 12-7 (May).  

Bobker, David. 2011. A Quick and Dirty Credit Risk Reverse Stress Test. Working paper 

(November).  

Committee of European Banking Supervisors. 2010. CEBS Guidelines on Stress Testing (GL32). 

Counterparty Risk Management Policy Group III. 2008. Containing Systemic Risk: The Road to 

Reform. Working paper (August).  

Financial Services Authority. 2008. Stress and Scenario Testing. Working paper (December) 

Flood, Mark and Korenko, George. 2010. Systematic Scenario Selection: A Methodology for 

Selecting a Representative Grid of Shock Scenarios from a Multivariate Elliptical 

Distribution. Working paper (March).  



 20 Robust Risk Estimation and Hedging: A Reverse Stress Testing Approach 

Glasserman, Paul, Kang, Chulmin and Kang, Wanmo. 2012. Stress Scenario Selection by 

Empirical Likelihood. Working paper (December). 

Grundke, Peter. 2012. Further Recipes for Quantitative Reverse Stress Testing. Journal of Risk 

Model Validation (v. 6, n. 2), 81-102.  

Grundke, Peter. 2011. Reverse Stress Tests with Bottom-up Approaches. Journal of Risk Model 

Validation (v. 5, n. 1), 71-90.  

Jorion, Philippe, Value-at-Risk, 2nd Edition, McGraw-Hill, 2001. (3rd Edition, McGraw-Hill, 

2006) 

McNeil, Alexander J. and Smith, Andrew D. 2011. Multivariate Stress Scenarios and Solvency.  

Working paper (February).   

Mirzai, Bahram and Müller, Ulrich. 2013. On Reverse Stress Testing. Intelligent Risk (v. 3, n. 1), 

8-11.   

Novosyolov, Arcady and Satchkov, Daniel. 2010. Portfolio Crash Testing: Making Sense of 

Extreme Event Exposures. Journal of Risk Model Validation (v. 4, n. 3), 53-67.   

Pritsker, Matthew. 2012. Enhanced Stress Testing and Financial Stability. Working paper (July).   

Skoglund, Jimmy and Chen, Wei. 2009. Risk Contributions, Information and Reverse Stress 

Testing. Journal of Risk Model Validation (v. 3, n. 2), 61-77.   

 


	ABSTRACT
	INTRODUCTION
	REVERSE STRESS TESTING
	IDENTIFYING SCENARIOS UNDER REVERSE STRESS TESTING
	REVERSE STRESS TESTING IMPLEMENTATION
	ADDITIONAL NOTES

	DISCUSSION AND APPLICATIONS
	Application 1: Enhance risk decomposition techniques by adding plausible scenarios beyond the standard decomposition based on Euler’s theorem for homogenous functions
	Application 2: Suggest efficient hedges

	CONCLUSION
	REFERENCES

